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Martihgale Convergence and the Radon-Nikodym
“hecrem in Banach Spaces

. *
$.D. Chatteérji

§ 1 . Introduction:

In recent years, several authors have coasidered various extensions of the
martingale convergence theorems of Doob-[8] to the case where the random variables
take values in a Banach space (B~spacé} e.g. Cha;terji (& (a), (b)] Scalora [17],.
A.I, and C.I, Tulcea [18 (a) ] and Metivier [12]; the last named author has even
considered the general case of locally convex topological vector spaces. Whereas
certain types of convergence thecrems were shown to be valid [4 (a),(b)] for
arbitrary B-spaces, a counter-example in Chatter:ii [4 (a)7 shows that without
some condition on the B-space concerned, some of the most important convergence
theoréms of the scalar-valued case are invalid. The main purpose of this paper is
to elucidate this latter situation, by demonstrating that the validity of almost
any general theorem for marfingales taking values in a B-space is equivalent to
the fact that the Radon-Nikodym theorem is valid for set-funetions taking values
in such spaces. At the same time, this paper offers self-contained proofs of
almost everywhere (a.e.) convergence theorems for B-space-valued martingales,
theorems which are more gencral than thoée to be found in [17,18 (a)]. The

method of proof yields, as a by-product, several known Radon~Nikodym theorems for

B-spaces, including one due to Phillips [13].

§ 2 , Notation and. preliminary remarks:
For the sake of clarity of exposition, I shall consider only the case where the
underlying measure space is a probability space S, with 0-algebra I of measurable

subsets and P a O-additive positive measure on I with P(S) = 1. Suitable generali-

&
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zations to the case of an arbitrary measure space will be obvious to the interested
reader, X will be used to denote a B-space with norm I-] and all random variables
£ with values in X will be assumed to be strongly (or Bochner) measurable functions
on S with values in X. The integral of such a function, denoted by E(f) or
[£(s)P(ds) or simply [f will always be considered in the Bochner-sense, These and
other measure-theoretic concepts and notations are to be found in Dunford and

Schwartz [9] Hille and Phillips [11].

Given a sub-0- algebra Zi of ¥, there exists a well-defined linear operator of
.o . . 1 .
norm one, the conditional expectation operator Ei mapping L (Z,X) —> L (Zi,X)

and satisfying

3
—

fAf = fAEif Az, .

n
Here Ll(Z,X) = {f] £ is Z-measurable, ][f]k= JI£] <=}, 12 £= T acC, (s),

k=1 S Ak

a, =X, AR{EZ (CA(s) 1 if s = A and O if S¢A) Lhens.. £ = Z‘P (C

k Ak) “x

where Fi stands for conditional probability given Zi as in Doob [8]. For a general
f, Eif caﬁ be easily shown to exist by a standard approX¥imation argument, This
procedure is necessary siﬁce given a X-valued d-additive set-funktion p on I
such that u{A) = 0 wheneven P(A) = O,u is not necessarily an indefinite integral

of a functfon with respect to P, even though the total variation

V (A) = Sup{kZJ“(Ak),Ak‘E 2, A1<: A, Ak disjoint} which is always a non- neoau1ve
measure on X is totally-finite, Thus the standard argumen: for the existence

of the conditional expectation opzrator Ei is not applicable., It is convenien:

to 1nuroduce at this point the following definition,

Definition 1: The B-spmce X has the RN-property with respect to (5,%,P) if every
X-valued ¢-additive set~funktion p of bounded variation (i.e. %i(S) < o ) wihich
is-absolutely continuous with respect to P (i.e. P(A) = O => n(A) = 0 or
equivaiently_vu<< P) has an integral representation i.e.:ﬂf Ele(Z,X)‘such that
H(A) = ff(s)P(ds),\j A= 7%. X will be said to have property (D) if it has the

A
RNuproper ty with respect to Lebesgue measure on the Borel sets of the unit inter val



Bochnex and‘Taylor [2] had defined property (D) for a B-space X as being the
property that a function -of strong bounded variation on the unit interval is
differentiable (strongly) almost everywhere. It can be easily seen from the
methods of the present paper that their definition of property (D) is equiva-
lent to mine,

It will follow from the work in the next section that if P is not purely atomic,
X has the RN-property with respect to (S,%,P) if and only if X has property‘(D).
So for all practical purposes in this connection property (D) is what really
matters, If P is purely atomic, then any B-space X has the RN-property with

respect to (S,Z,P), as can be immediately verified,

Definition 2: Given a directed set (N, £) and a family of o-algebras I, C L,
i & N, the system {fi,Zi, i = N} forms a X-valued martingale if fi E:Ll(Zi,X 5
is j =2 Zi C:Ej and Eifj = f,. The following two special examples of X-valued

martingales will play special roles:

Example (i);. Let Zi,

(fi,Zi, i = N} is a X<valued martingale,

N be as above and let £ EELI(Z,X). If fi = Eif then

Example (ii), Let u be a X-valued J-additive set-funciion and let I be the directed

set of all partitions =« = {A A2,...,An} of S wheren = 1, Ai =E P(Ai) >0,

n Y
.o - Q 3 . 2 e 7t < s ‘ . a r,._. . T . e B
iglAi S, Ais dis joint, 1 5 ﬂ2 if every set in the partition , 1s contained
(P almost surely) in a set of the partition T Define
n(a,) )
fﬁ(s) PA) if s EEAi .

Then {fﬂ,zﬁ, Te I}is a X-valued martingale where I = J-algebra generated by
sets in the partition % , For this latter fact actually the additivity

of p is all that is necessary, These fTr martingales have been used
often in measure theory. See e.,g., Dunford and Schwarz [$] pp. 297.

As an illustration of the connection between the converzence of martingales
and RN-property, I shall state the following result which is of an elementary

nature.



R

Theovem L1:
(a) Let f E;LP(Z,X) i,e., f is S-measurable and ufﬂg = f]flp < o,
1 £p < w, Then for any directed set N and J-algebras Zi the martingale

{£., £., i = N} of example (i) has the property that

i’ 71
lim || £,- £]] =0
5 i "a'p-
where
gnu wa = conditional expectation of f given
the g-algebra I generated by U I,
oo 1
i=N
) In exam ii) 1£ WA = .
(t) In example (11) 1if (A) if(s)r(ds), £fe= LP(Z;X)
then
lim [I~ - f” =0 .
T 7 P
(¢) If in exaple (ii) lim |[f - £ [ = 0O i,e. £ is a LP-
TR | o P n
. 1’2
Cauchy sequence then R(A) = [ £(s)P(ds) for some £ E;LP(Z,X .
A

Remarks: Theorem 1(a) is a generalization to directed seis of a corresponding
theorem in [4(b) ] where N = positive integers. Since the method of proof is
exactly the same and in any case of uiter simplicity, only a bare sketch will

be provided, Parts (b) and (c) were proved by Rennow [13] for the case p = 1

it

slightly differently, Here (b) is an immediate corollary of (a) since f% E £

and clearly Qw = ¥ in this case., As regards (c), it will be noticed that when

1< p<wand X = complex numbers, the much weaker condition that sup| f || <t is
’ T T p

sufficient (and clearly always necessary) for the conclusion, This is indeed a

classical theorem of ¥, Riesz where the condition is expressed as

on sy P
sup X
Toi=}1 [P(Ai)

pT s

This latter assertion (not valid even in the classical case for p = 1) will
follow from the main theorem of this paper for a wide class of spaces X; in
fact, it would show,in some sense, exactly which class of spaces X allow such

a thecoren,



Proof: (a) Assume first that f is Za;measurable, If f is measurable with

respect to the algebra U %, then E f= f for 1 2 i ., Hence for this case the
ieN * 1 0,

conclusion follows, A general £ which is I -measurable can be approximated

arbitrarily closely in LP-norm by functions measurable U Z,., So the conclusion

. L
i=N
holds for such f. Finally for any f e LP(3,X) £, =BEf=LEf=EZf .As

i
pointed out above (b) follows immediately.
(c) From the completeness of LP(Z,X) it follows thatzif EELP(Z,X)

< i ."f =Oo
such that lim“ fn “P

I shall now show that fﬁ = Eﬁf. Assertion (é) then will justify the conslusion
of (c). Now given = >0 _ such that [[fﬁ; f[[p <e if 'z .+ To any =,

e ] :
since the set I of partitions is directed, there is a partition %7 which is

finer than both n and . i.c, ﬁl-% T, Ty z . It has already been remarked that

{fﬁ,, L /s = I} is a martingale and hence for any set A E x

[f =[f .
AT AN

Now

;1{ 2 £] = ;1{ £, - 1{ £] = | £, £, = ﬂfT;l- el < e .

Since ¢ is arbitrary and fn is Zﬁ-measurable, E“f = fﬁ. This concludes the proof,

An interesting corollary, noted by Rennow [161 in the case p = 1, will be stated

here for later application,

Corollary: In order that an additive X-valued set-function M is the integral

of a function £ EELP(Z,X) ‘either of the following two conditions is necessary

and sufficient:

. - 3 .. 3 s
(1) For every monotone sequence T of partitions (i.e. T, = ﬁn+l)
the functions fﬂﬂi n 2 1 as defined in example (ii) above should be Cauchy’

n
: in LP
convergent in L7,

(2) . The restriction of u to every sepafablc’(LsuBalgebra of ¥ (i.c,

one generated by a denumerablc number of sets) has an integral repreéentation



by means of a function from LP(Z,X).

§a3. D-! SCIYSS" on Of tt\e “\N..pj_opcvm—‘--g

If P is purely atomic i.e., there exists a seruence of disjoint sets Ep E Z,

P{E) >0, P/ U = ) 1 such that ©’s are P-ztoms-in % i,e, Y & %, ¥ < E
n n=1 n n
implies P(F) = 0 o P(En>’ then every B-spacz X has the RN-property wiih respent

to (5,2.P), Indeed given any C-additise, P-absolutely continucus, Xrvalued set

co
function { of bounded variation, the functica £(s) = Z a_©C, (c) with

a = “(Er)/P(En> is easily seen to b2 an integrable funation such thatu(
- i

o
~r
i
e}
h

for all E = Z, Now an arbitrary prcbability measure can be written cdowm, essential-

ly uniquely, as a convex combination dpl + (1~d)92, 0=dsl, of two p*ob,bi Lity

measures P, ,P, where P, is purcly atomic and P2 is purely nomatemic, It follcws,

1’72 1

therefore, that X will have the RN-sroperty with respect to (8,%,P) If and only
if'it péssessestﬁN-property with respect to (S,%,P,). I shall assume now that
P is purely nonatomic on I, By virtue of the corollary of the last scction, 4
will possess the RN-property with respect to (S,Z;P) if and‘onlj if this happens

. Clecrly, I can

P) for every separable O-subalgebra I o

with respect to (S,Z

0’ 0

be so chosen that P restricted to ZO is also purely non-atomic, For iustance, ZO

can be defined to be the ¢g-algebra generated by a sequence s of successively

, -1
& = 4 for = °
finer partitions such that R {Anl’ Anz""’Anzn} . and P(Ank? 2 5 formnzl

This is possible since P is nonatomic. Now if A is aay set belonging to*ZO with
FY¥2) > 0 thenthere exist - indicas n and k such that 0 < P(Aﬂnk) < P(A) thus..
proving the non- existence of atoms in Z . By a theorem of Halmos and Von Neumann
L}O,pp.l?B] the measure algebra (ZO,P) is isomorphic to the measure algebra ((3,m)
of the unit interval with Lebesgue measure ‘m'" on the Borel sets. It is 2asy to
‘see that the measure algebra isomorrnhism T between 20 and+3 can be extended

. . 1 - 1, e d .
to an isometry between the wiole of L (Z ;L) and LW (@33,X) (considered as equivalence
classes of functions) in such a way that [ £dP = [ Tf dm holds. It is to be noted
, ' A TA 7
that T is to be thought of as working on equivalence classes of X-valued functions

and that no assumption is made concerning the possibility of inducing the measure-

algebra isomorpnicm T through a 1-1 point-transformation bctween S and the unit



interval, This latter which may be impossible if S is “pathological" is not
necessary in the present discussion., Since any X-valued g-additive P-absolutely .
continuous {m-absolutely continuous) set function p can be liftad to the

~

respective measure algebras Zoﬁﬁ , it is clear from the above that X has

4.

ropert DY if and only if X has the RN property with respect to (5,5..P),
P i y 7 o, p p } & JGJ

I shall now summarize the conclusions of the above discussion in the form of a
theorem:
Theoren 2

() If (5,r.P) is purely atomic then every B-space has the
/ 2 o

1=

RN~property with respezct to it,

o

(b) 1If P is not purely atomic then a B-space has the property (D) if
y p

roperty with respect to (5,I,P).

0]
3
[a
Q
B
]-.
<
f gt
]
e
rt
D—A
0
[47]
cr
o
]
m
Dagrd
11
o

Thus we scee that the Rii-property is really independent of the underlying probabili-

ty space and can be considered entirely in relation to the unit interval,

§ 4. Preliminary a-e+ convergence theorems:

The purpose of this sectibn is to prove a.convergence theorem which ensures a-e-
convergence of the martingales of Theorem 2(a) above in case the directed set
N = {i,2,3,...} under the natural o¥dering, No assumptions are necessary on the
space X for‘this theorem, In this generality, the theorem was first proﬁed by
using a deep theorem of Banach, in Chatterji [%4(b) ] and also by A.I, and C.I,
Tulcea [18(a) ] later. The procof preéented here is totally elementaryland denends

on the following lemma which is stated in the present form for later use,

Lemma 1: "Let [fn,Zn, n 2 1} be a %X-valued martingale and let A & . Then for

any €2> 0

Jt=—

P(s = A, sup [f ()| 2 e = sup [|E | .
nzN " ‘nzN4i ©

0!

The lemma is an easy consequence of the fact that lfn[ is a positive submartingale

and is, in this sense well-known., See Doob (8] pp. 314 ,



‘ 1 C o . ;
Theorem 3: Let £ = L (Z,X) and let fn = Enf = conditional expectation with

respect to Zn. Let ch: Zn+1’ n=1,2,...,. Then

lim £ = f
n e}
o —>®
exists (strongly) a-.e- and ﬁw: Qxf = conditional expectadion of £ given {;x, the .
[o¢]
c-algebra generated by the algebra U ‘Zn.
- n=1 ‘

Proofs Since the proof is exactlyv the same as one of the proofs for the scalar-

valued case (see Billingsley [1] or Dunford and Schwartz[®] »p., 208) it will be
0]

presented only briefly here, If f is measureble with respectto U ‘Zn then
n=1

fn = £ from some point on and hence the conclusion above is immediate, If £ is

measurable % = then, given €2> O, >0, a g .can be found, measurable i Zn’
n=1

and such that || £ - gl]l<ZE§L-. By the linearity of the operators En’ one has
|£-£ | s [E e-Eg| + |E_(£-) - E_(£-g) ]
= |[Eg-E gl +2 sup E_[f-g] .
nzl
Hence lim sup ]f - f [ £h=2sup E [f-g] so that
m,n —> o noon nz1 7
P{lim sup ]fnnfml,.-'z s })sPhze)l

m,n —>> ©

A

2 gl <

by an application of lemma 1 tothe real-valued martingale Enlf—g]. O being arbi-

trary, P{ lim sup fn-;fm[ z z} = 0 whence ¢ being arbitrary, the existence of

m,n —> © 1 .
lim £ 1is demonstrated, For a general £ = L (5,X), since £ =E f =E f _ and
e B n n n «
n -
£, 1s I -measurable, the existence of 1lim £ 1is assured. The identification of

n->
the limit as being fw.follows immediately from Theorem 2(a) above.

For general reference, I shall state a theorem here for the case N = {0,-1,-2,...}
vwhich was proved in [é(b)J,againkby the afore-mentioned theorem of Banach and can
_now be proved by the method given above, without any use of scalar-valued martingalé

theory.

"Theorem 4: Let {fn,Zn, n z 0} be a X-valued martingale then

lim f = f-m
n—> -w n



-é..

exists strongly a«e* and also in Ll(Z,X) where £_¥= Emnfo= conditional expactation

of £ givens =0 I_.
0 ™ nps0 B

It may be appropriate to add here that generalizations of theorems 3 and 4 to
arbitrary index sets N are not possible, even imthe scalar-valued case, without
some further assumptions on the structure of the c-algebras Zn’ The first counter-
example was given by Diendonne [7] . ‘A much simpler counter-example has recently
been giﬁen by Chow [5] . I should like to point out here a more obvious way of
looking at Chow’s example, Let {gn, n 2 1} be a sequence of independent r,vﬂ’q
with E(gn) = 0, taking values in an arbitrary B-space X. Let £f = Zgn exist a«e®
but suppose that the series is almost surely not unconditionally convergent, Let
further ﬁzz LI(Z,X). Define f;; z g, where Tis a finite set of positive integers.,
Let the_ﬂ’s be ordered by ;pcluszfg. If Zn is the smallest O-subalgebra with
respect to which {gn, n = 1} are measurable, then clearly f% = E_f. Further,

lim £ cannot exist almost surely since this is equivalent to the unconditional
’t .
convergence of Zgn almost surely., Note,however, that theorem 2(a) implies that

I £ - fﬂ[l —> 0 all the same, A convenient way of choosing g 1is to take gnfgg a

where O +'a e X and S 1 with probability 1/2 and are independent, In this

case, £ = iZ(Z,X) even, since E{fiz = lalZ‘l/%2<<» and hence by Theorem 2(a)

fﬁ_even converges to f in LZ(Z,X). This choice was made by Chow in [5] pp. 1490 but
the point made here is thatvn6~calcalation is necessary to show that li@ f% dogs

not exist since the series Zgn is blatantly unconditionally convergent, ‘This latter
in the real-valued case automatically implies that lim sup f; = 4+ © and lim inf £ 5=

A counter-example to theorem 4 i.e, the Ydecreasing' index case is also possible,
n-1 ‘
Consider “Riemann sums" fn(x) = = ¢ f(xtk/n) where £ EsLl(O,l)_with respect to

=0

Lebesgue measure and + is addition module‘l.vThen, it is easy to verify that

fn =‘Enf = conditioéﬂéxpectation of fkgiven Zn, the O-algebra of Borel-sets of

1]n2 then ZniZD an. Define n,<< n;

if nlln2 + Then {fn,Zn} is a martingalé which need not cdnverge a*e- as shown

the unit interval with period 1/n, If n

by the counter-example in Rudin (151 even though £ E&Lm(o,l). The analogue of
theorem 2(a) however, shows that in all cases however fn —>a in Ll(o,l) where

1
a=[£.
o
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§ 5. A decomposition theor em for X-valued set-functions:

In order to avoid interrupting the continuity of the proof of the main theorem
in the next section, I shall presenf’here a theorem concerning finitely additive
X-valued set-functions., As proto-type of this theorem, in the scalar-valued case,
can be considered a theorem of Hewitt and Yosida which states that every finitely
additive (scalar) set-function on an algebra can be uniquely decomposed into the
sum of a g~additive and a purely finitely additive sct-function, A convenient
‘reference is [9] pp. 163-64, The present theorem for Xrvalued set-functions is

not as sharp as the above theorem but is enough for my purposes.

Theorem 53 Let P be a probability measure on (S,%) where I is assumed only to
be an algebra of sets and let p be a X-valued finitely additive set~function on I
of bounded total variation, Then H= 0 4+ 1 where 0 is a O-additive set-function

whose total variation Vg is finite and P-absolutely continuous and 7 is a finite-

ly additive set-function whose total variation V_ 1is finite and P-singular i,e,

; !/
given £,8 >0 ] A= £ such that P(4) < & and Vn(Ags < 8, A = complement of A,

Proof: The method to be used is fairly standard and is incorporated in pp.311-13
of Dunford and Schwartz [9] . Given the space (S,I), there is a space S1 which is
a compact Hausdorff space which has the following propertiess (1) Sl is totally

disconnected i,e., the algebra Zl of simultaneously closed and open (clopen) sets

form a basis for the topologyjof S, and (2) there is an isometric isomerphism H

1

between B(S,I) the space of bounded scalar-valued Z-measurable functions on §
and C(Sl)’ the space of scalar-valued continuous functions on Sl’ both spaces

being considered under the uniform norm. Let the correspondence H(CA(S)) = CA (sl)
V ' A

'(C’s standing for characteristic functions) induce the set-algebra isomorphism

This correspondence is such that

T between ¥ and Zl i.e, define 7(A) = Al'

w(Z) = Zl. Now given an additive or'd~additive (X:valuéd or scalar-valued)set-
function Q on Z, the formula Ql(Al).= Q(Tal(Al)) always defines a g-additive set-

function on 21, whether or not Q was ¢-additive to start with, The reason for this

. . o o . .

is that the ¢-additivity equation for Q. viz. Q. (U A) = ¥ Q. (A) if A_=3,,
1 1 =1 % pe1 1%n n 1
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o]
A ’s disjoint and U A = 3
n =1 P 1

of 5, precludes the possibility of the existence of an infinite sequence of

is trivially satisfied since the compactness

[o0]
non-cmpty disjoint Ahfs E&Zl such that U An EfZl'alsb. Clearly if Q is of
n=1 '

finite tctal variation, so is Ql on %., If this is so,then Q1 can be extended

1.

to the o-algebra 3, generated by % If Q is scalar-valued, this is possible

2 1°

by a classical theorem of Caratheodory. If Qliis X-valued then also this fact
has been known for a long time. For convenient reference, see [18(a) lJpp. 119

and foot-note (6). Now let Pl,ul be these transpositions of P,u of the theoren

to the space <ST’21}° Let Plgulstand also for the extended set-functions on

(8,,%Z.). p is further of bounded total variation on I, also.
1772 1 :

2
According to a theorem of Rickart {14] which generalizes the classical Lebesgue

decomposition theorem for scalar-valued set-functions, ulm 9y + n, on the

o-algebra 22 where Ql;ﬂl

and 61 is.?l-absolutely continuous and Ny is P

are of bounded variation if by is so (as in this case)
1-singular. Let 0,M be the

inverse images of the restrictions of ¢ to I Then on the given space (3,7%),

1™ 1
g =0 4 7 where Vd is P—ébsolutely continuous and Vn is P-éingular. The O-
additivity of 0 follows trivially from the fact that V; is absolutely

continuous with respect to a C-additive function P, Thus the decomposition

theorem is completely established,

B

It seems likely that 7 should be further decomposable into a sum of two set-
functions, one g-additive and P-singular and the other purely finitely additive.
by which is meant that its total variation is singular to all OJ-additive set-

functicns on I, I have not been able to prove this yet.

§ 6. The Main Theorem of this paper will bow be stated as follows:

Theorem G, For a B-space X and a-probability space (S,Z,P) the following

statements are equivalent:

Every X-valued martingale {fh,zn} n 2 1, with the property that
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(1) sup [f ||, <+ w is such that £ = 1lim £ _exists strongly a.e,
' ; n'l o n
nzl n =>
(2) sup ﬂf [. <4 o is such that £ = lim f exists weakly a.e.
ol co n
nzl n => o

. . , : s ¥ *
in the sense that :3 fm strongly measurable such that YWy = X,

* % ,
lim < £ (s), y >=<1f(s), y > fox s & N__, P(an) = 0, It is enough to
> © n ‘ v -
know that foo is a,e., separable~-valued to deduce a version of it which is strongly

measurable, See proof of Theorem 7 later for an elucidation of this condition,

(3) for some 0> 0  cup lf (s}[ < Ca.,e, is such that £ = iim £
L © n
i 2z 1 : n-> ©

13

exists strongly a.e,

(&) for some T > (0, s3up ff (s)[ < C a.,e, is such that £ = lim fn
n=z1 n ®n > o

exists weakly a.e., in the sense of statement (2)

(5) f’s are uniformly integrable {%l,e., lim f[f“IC . =0
n N = n [lfn'> M}
. . : - . - 1 . .
uniformly in n 2 1) is such thaL:] ﬁwza L (Z,%) with 1lim “ fn-fw”l = 0
n > w ‘
] e — 1P .
(6) ns:pln fn”p <w, 1 <p<ow, is such that -] £ s L (Z,X) with

lm || £~ £ ] p =0
n> o

(7) X has the RN-property with respect to (S,Z,P).

Remark: The reader is reminded that in view of the discussion of the RN—property
given above, the convergence properties of X-valued martingales are rather indepen-
dent of the underlying probability space. If P is purely atomic, then all the 7
statements above hold for all B-spaces X. If P is not purely atomic and if X has
one of the above 7 properties then X has all of them with respect to any other
probability space and in particular X has property (D)., I should like to remark
that the equivalence of (5) and (7) have also been pointed out by Ronnow [16].

Some of the equivdlences above (e,g. (2) <=> (5)) can be dedgced very easily,

independently and are listed for their possibie utility and for’cbmpleteness.

Proof, The major part of the proof consists in showing that (7) => (1). All the
other implications then follow by fairly routine arguﬁents. So I begin with

proving that
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(7) = (1): Given the martingale {fq,Zn, n =z 1} wiﬁh the property that

sup Elfnl < o, let the X-valued seﬁ—function;xn be defined on Zn By thé
nz1l .
formula.uéA) = [ fn(s)?(ds), Clearly, the martingale property of the f;s is
A .

equivalent to the statement that K ,,is an extension of H,to Zn+L:3 Zn. Hence

the formula p(a) = lim un(A) cefines an X-valued sethfﬁnction on the algebra

oo n -> o E _ ,k v
Z, = nL=11 L, which is clearly finitely additiye. Let V“(A) = sup{izl lp(Bi) | [Bie Z,
Bic: A, Bi disjoint, 1 £ k' < » } be the total variation of p for a set Ae Zy

It is easy to see that V (A) = lim [ [fq]'< +o . In other words,u is a
. F n->c A ' ’
finitely additive set-function of bounded total variation on the algebra Zw. One

of the difficulties in proving (1) is that o may'not‘be o-additive, a difficulty
which maj arise even in the scalar-valued case. I shall obviate this difficulty
by using Theorem 5 éf the preceedi;g section, According to‘that theorem p =0 + 7
where‘ ¢ is ¢-additive and whose variatién is P-absolutely confinuous. By the

RN-property (i.e. (7)), o(d) = [ g, A.Eszw and g = Ll(Zan) Z, = g-algebra
generated by Z,e If S, is the restriction of § to Zn then clearly Gn(A) = [ &,
pX

A.Eszn, where &, = Eng. Since, by assumption, the restriction HnOf boto

is also an integral, the restriction 1, of 1 to Z, must be of the form [ hn'
- A

Indeed fn = gn% hn’ and {gn,zn}, {hn,zn} are ¥X-valued martingales, Moreover, since
g, = Eng, by Theorem 3, lim g, = g‘exists strongly a.e, I shall now show that

, n-—> _
lim hn = .0 strongly a.e. Because of the P-singularity of Vﬂ , given 0 <€ , 83< 1,
>0 A ' '
I can find A.Eszw ( and hence A = ZN for some N) such that

: ._ €8
PA) +V ) < G

Now

P{ sup [hﬁl >e}=Pa; sup [hnl >‘8} + P{A; sup !hn[ >e )
nzN n=zN n =N

< £d -+'l~ sup [ lh‘I'P(ds). (by lemma 1)
2 . € n
nz=zNA
_ed 1 ed , 8
=SV @ <§ b3 <5,

Hence

P{ lim sup Ih [ >e} = P( sup - [hﬁ] >e} < 8,
a>we P nz N : |
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€,0 being arbitrary, it follows that lim 'hnl = 0 a,e, This proves that
n-—> ow

lim fn exists strongly a.e. and to some extent characterizes the limit function,

n "> o

Proof of

(1) => (5):

Suppose fn’s are uniformly integrable, Then sup an”l < ® and hence by (1) the
’ E nzl 1 :
limit lim £ = f exists strongly a,e, Clearly £ = L (& ,X) since by Faton’s
n"">6an ® _ ® 0
lemma E]fw]‘é nlig'mnfn” y » Hence ]fn(s) - fm(s)l as a sequence of real-valued
functions is uniformly integrabie and tends to O a.e. Therefore

lim [l - £ ]|, = 1im E|f - £ | = O,
a=e &0l e B

Proof of

(5) => (7):

By thé Corollary to Theorem 1, given a P-absolutely continuous X-valued J-additive
function p of bounded total variation on %, to prove that ¢ 1s a P-integral, it
is enough to verify that for every sequence ﬂﬁ of finer and finer partitionms,

the sequence of X-valued r.v.’s fn_(denoted there by £ ) which forms a martingale

n

{fn,Zn} (En = O-algebra formed by ﬂn), is such that fn’s converge in Ll(Z,X).

If I can show that fn’s ‘are uniformly integrable then by virtue of (5), this

latter will follow and (7) will be deduced, Because of the inequality
p(l£ | 2m s=]e ] s2v (s)
n N nil ™ N p
given g> 0, one can choose N so larg? that
P(JE |20 <e for all n 2 1.
Because VH is P-absolutely cgntinuous, given o> O, there exists € > O such that

P(A) < € implies VM(A)_< O for A E I.

Hence for any 3> 0,
[ | = Vp{[fn[ 2 N} < B n=1,2,...
(£ |=0)

if first ¢ and then N are chosen as indicated above,
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This proves uniform integrability of £ and proves (7).

Proof of (2)A¥> (5):

Let {fn,Zn} be an uniformly integrable X-valued martingale. Clearly sup ”fnnl<cn5
' nzl
hence by (2) there exists ﬁw, which can be easily seen to be in L (;n,X), such

* * % *
that lim < fn(s), y >=< gn(s), y >a.e, for any y = X . Since the uniform
n—> «© :
*
integrability of fn’s, clearly implies the same for < fn(s), y >, it follows that

: * * * .
for every y = X, -{ <-fn,y >, I 1 £n 5w} is a scalar-valued martingale i.e,

in particular, for A X_, the relation
n

n

<[f,y >= f<f,y*>
A A

* -x--
£<foo,y =<[E£,y >

: * %
is.valid for every y = X , Hence [ £, = f £ for all A €I . In other words,
A A

fn = Engw. Theorem 1 then implies that ]lfn- ﬁm"l > 0.

The implication (1) ==>(2) being trivial, the above arguments show that (1), (2),

(5), and (7) are equivalent,

Proof of (3) => (:

-If condition (3) holds for some C > 0O then clearly it holds for all 0 < C <,
Sugpose first that the X-valued set-function u is such that']ézﬂﬂ = Ni,e,

P{Egg s N}'= 1 which means that'VM(A) §'NP(A) for all A 3% and s;:e integer N 2 1,
Because of the corollary to Theorem 1, as in the proof of (5) => (7), itésﬁffices
to prove that for every sequence ofvincreasily finer partitions X the associated
martingale {fn,Zn} is such ;hat fn’s qonvérge in LI(Z,X); Since VM(A) £ NP(A),

it follows that s;p lfn(s)lé N and by (3) fn’s converge strongly a.e. to a function
gm which is thenna;timatically in Ll(Z,X). By the dominated convergence theorem,
since [fﬁ(s) - ﬁx(s)[ < 2N a.e. || £ - gn”l —> 0. Thus every X-valued set-function

g under consideration, with the above-méntioned extra property is representable

as an integral, For a general p , the proof now proceeds by a standard argument,
which hés nothing to do with mértingalé theéry, as follows, Let.AN= [slggﬁ § NJ}.

Clearly AN c AN+1 and =H21AN. ALet_'uN§§)1= u(BAN) for B = . Then
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V (B) =V (BAN} and so ¥ §:)) J HP{BAV} s NP(B). By what has already been proved,
Ky H My < : |

. . 1 .

it follows that pN(B) = [ £  for some £, =1L (£,X). It is easily seen that fN = 0
T\
13

N N

a,e, on AN and that for N > M (AN.:D AM) £y = fM a.e, on AM + Hence for N > M,

Hey gyl = ng'lle AMCRRRRCT RN
so that || fN— fMH 1 -> 0 as 4, => « . Heace there cxists an f EELl(Z,X) such

that l[fN— f[[1"> 0 as N> o , Since

w(B) = lin  p(BA) = lim [ £ = [ £(s)F(ds),
N>w’ © N->w B U B

holds, (7) is proved.

The argument of (2) => (5), shows that (&) => (3) since the condition in (3)

implies uniform integrability and once it has been shown that there exists ?w

such that || £ - £ [,~> 0, it would follow that £ = E_f whence Theorem 3 would lead
n ooll n n co

to the conclusion of (3).

Since the implications (3) => (4) and (1) => (3) are immediate, it follows

that (1), (2), (3), @), (5), and (7) are equivalent,

As regards (6), notice first that (6) ==> (3) by an argument used already, For

if sup[fn(s)[ < C a.e, then | fnﬁp < C for n 2 1, Therefore by (6) there exists
n

f eIX(2,X) such that || £ - £ ]| = 0 (1 <p <o ). It follows then that £ = E_f

R n" el p » n

n

and Theorem 3 does the rest,

On the other hand (5) => (6), because given a martingale {fn,Zn] with

sup;ﬂf
nzl
grable and hence by (5), there exists £ such that “.fné fm“ 17> 0. This implies

nl[p <o, 1 <p<w, it follows immediately that fn’s are uniformly inte-
as before that £ = E £ . Further f = LP(Z X) since by Fatoun’s lemma

n n o o) e ”
flfm]p £ lim fifnlp <o by the assumption of (6). Theorem 1 now implies that

n —— 2
n !l p

Thus the equivalence of (1) - (7) is established.
Applications:

In this section the main theorem will be used to dednce some well-known Radon-

Nikodym theorems for X-valued set-functions. To emphasize the simplicity of these
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“deductions, I should like to point out that what is needed is not the whole

strength of the main theorem but rather the following elementary version of it.

Let p be a X-valued g-additive set~fﬁnction of bounded total variation on the
probability space (S,Z,P) and let u(A) = O whenever P(A) = O, Then for any sequence
of partitions nn,.n 2 1, which become increasingly‘finer, the functions fTr (s)
of Example (ii) of section (2), are uniformly integrable.‘u has the integra?
represehtation | £(s)P(ds) if and only if for every sequence ﬂn of increasingly

A

finer partitions the corresponding sequence fTr converges weakly a,e, (P) to a

n
» o« *
strongly measurable function £,(s) in the sense that for all y = X*, there

is a set of P-measure zero Ny*, possibly depending on y , such that if s. & N ¥

L
1

then lim < f (s), y* >=< f (s), y* > .
n-—>

It is left to the interested reader to verify that the "non-elementary" argument

(7) => (1) of the main theorem is nowhere needed in a proof of the above statement,

Using it, I shall now derive a theorem originally due to Phillips [13]. A variety
of other theorems of this sort e,gz. the Dunford-Pettis theorem, the Dunford-Pettis~
Phillips theorem (see Béurbaki [3]1) follow effortlessly in a similar manner,
without any separability assumption on the space X as was briginally made and

later removed by the use of "lifting" arguments by A.I, and C.I. Tulcea [18(b)] .
These and some more recent theorems of Mr. M.A, Rieffel (to be published) and
representations by means of integrals other than Bochner-integrals will be

deferred to a more systematic' treatment in a later publication,

Theorem 7 (see Phippips [13] ).
Let p be a %-valued d—additivé set-function of totally bounded variation on a
probability space (S,Z,P) such that p(A) = 0 whenever P(A) = 0. If for every

P(A) P(A)

' 1
weakly compact then p(a) = [ £(s)P(ds) where £ L7 (Z,P).
' A

. ‘ . .
~integer N.2 1, the set KN = { lﬁiéll *Hiéli £ N, P(A) > 0} -is relatively

gProof:,- I shéll suppose first that for somé integer N 2 1, [p(A){ £ NP(A) for
.all A = %. The general statement can be derived from this special case exactly by

means of the method sketched in the proof, (3) => (7), of the main theorem.



By virtue of the remarks made at tﬁe beginning of this section, it sﬁffices to
show that if‘nn is an increasingly finer sequence of partiﬁions of S, then the
corresponding functipns fn converge Weakly a.e. to a strongly measurable
function %ﬁ in the seﬁse described before. Actually, it is‘enoqgh to know

that £ is separable-valued a.e, to deduce its strong measurability since

*

‘tne limit relation = 1im <'fn(s), y >=< £ (s), y* > a.e. {(even (f the
n -—> o ‘
null-set depends on y*'ez X*), implies that for each y*.EEX* the function

% . .
< ﬁw(s),y > 1is measurable with respect

to the ¢-algebra Z“: the completion of % under the probability measure P,

04

By a known theorem, (see Hille-Phillips [ll]), ﬁm is then strongly measurable
* . : '
with respect to ¥ . Clearly ﬁw can then be clhanged on a set of P-measure zero,
so that the new version is 2—stroné1y.measurable and such that the weak-convergence

of fn to ﬁw in the above sense remains unaltered,

From the definition of the fn’s it is to be seen that these finitely-valued

r.v.’s , take their values in the set defined in the statement of the theorem.

Let X0 be the closed separable linear manifold spanned by the values of fn(s),

s £ S, n 2 1, Two things about XO are to be noticedr (i) X,k is automatically weak-

V)

ly closed also by a general theorem (see [9] PP. 422, Theorem 13) énd that because

-

of the hypothesis of Theorem 7, (ii) the subset of X  consisting of the values of

0o
fn(s) is relatively weakly compact, For any point s & 'S, let a subsequence n
be chosen so thét £ (s) converges weakly to ﬁ;(s),'an element of XO. ihis is
‘possible because of (i) and (ii) above. (An application of the axioﬁ of choice
is inVolvedxin this procedure). Now for any y*EE X the sequence < fn(s), y* >,
being a scalar-valued martingale, converges a.e, Hence

liz < fﬁ(s); y* > < ﬁw(s), y* > a,e. Since ﬁm(s) is éeparab1e~valued,)the
:emagts made before show that it may be chosenvto’be stronglyizfmeasurable.

Hence the criterion given at the beginning of the section ensures that g has an

integral representation by means of a function from l} (Z,X).

Corollafy: The following classes of B—épaces X have property (D) and hence the

RN property with respect'to any probaBility'spaCe (s,z,P)
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(i) the reflexive spaces
(ii) -separable duals of Banach spaces i.e. X is separable and there is
a B-space Y such that‘Y* =X,
(iii) weakly coﬁ?lete spaces with separable duals, i.,e, X is weakly complete

*
and X is separable.

That the reflexive spaces have the property (DY follows immediately from

Py

Theorem 7. For the other two classes, the property (D) can be derived similarly.
‘The details are omitted, From the counter-example of the next section, will

be seen that neither separability nor weak completeness can be left out in the
description of the classes (ii) and (iii). The classes (i)-(iii) have been known
to possess property (D) for some time.I hope to discuss property (D) in greater

detail in a later publication,
'A counter-example:

Several examples are known of X-valued selfunctions which are ¢-addifive,

P-absolutely continuous, totally bounded variation but not integrals. E.g. if

S = the wunit interval (with P = Lebesgue measure on I= Borel sets) and X = L

(x) EELl is an old example of this nature. In

/

over this space, then p(A) = CA

Chatterji [4(a)] . a martingale is constructed from this in the obvious way,

which converges almost nowhere in any sense., As [18(a) ]Jpoints out, this shows

¥

in particular that L1 is not the dua} of any Space,by virtue of (ii) of the
Corollary above, a fact pointed out by Dieudonné first, An exemple of a non-
convergent martingale has been recently given by Renmnow [16]. I should like
to present it here in a different and very simple form and in a way which
illustrates various new features of the theory of X-valued r.v.’s, The under-

lying probability space is again that of the unit interval and let the B-space in-

volved be cq = the space of real or complex seduences which gonverge to zero
with Ii{ = 'sgpl Ixj[, X = (xl,xz,... ). Let 7n(s) be the sequence of Rademacher
functions og Ehe unit intérval. These are knoWn to be stochastically independent
under Lebesgue measure., (Definition of~7n($):,let s =_n§i an(s)Z-n be the binafy
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expansion of 0 £ s £ 1; then 7n(s) =1 - Zan(s)_= T 1 with probability 1/2).

Let e, = (O O,.l.l O,...) =c (l at the nth place); le | = 1, n2 1, Define

£ (s) = Z 71(s)e = (71(3),72(3),...,7 (s) O,.....). It is immediate that
{f_,2 ) o is a martingale, where Zn = g-algebra generated by intervals of
the type (**'kﬁé? , G sks 2n~1 Actually f is the sum of n independent
co—valued T4V, sf each of Wthh takes two values and each of which has expected
value 0, Clearly !fn(s){s.l and E[f | = an“1 = 1. But £ (s) does not comverge

. . . 0 . . .
strongly in ¢, Or even in the bigger space 1 at any irrational point s. On
the other hand, since (co)* = 11, and since the sequence < fn(s), y > converges
_ 1 * _ _
for every s, forany y= 1l = (co) , the sequence fn(s) converges weakly but

S .
not to any clement of c¢.. Further, since 1® = (17) , it follows that a martingale

0
fh taking values in a space X = (Y)*, may be convergent to ﬁmqin the weak%-
"topologi of X (i.e, the Y topology of X) without being strongly or weakly conver-
gent, The last remark is verified by noting that gn(s) = (71(3),...,7n(s);.....)

. [0}
has a non-separable range in 1,

It is to be noted however that for any sequence a s tending to O, however slow1§
the series of co—valued independent r,v.’s I an‘yn(s)en converges everywhere
unconditionally but not absolutely if Zlanl = + o, But Elanyn(s)enlz= Ianl

so that the variance series may be chosen to diverge., Thus one may have a
co-valued sequence of independent r.v.’s Yn which are uniformly bounhedeand of O
expectation and such that ZYn converges a.e. (even unconditionally) without the
convergence of the variaece series, in contradiction to a known theorem in the
scalar-valued case, I hope to pursue this matter further in other publications,
The example above may also be looked at as the martingale version of a counter-
exemple of Clarkson [6] pp. 414 of a 1”-valued function of bounded’variation

which is not differentiable anyWhere, although it satisfies a Lipschitz

condition,
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